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Use of the causality principle as radiation condition in dynamical problems of 

thermoelasticity is proposed. It follows from an analysis of the fundamental 
mathematical models describing the thermoelastic behavior of a continuous 
medium and used in the solution of specific problems, that some will yield 
physically unrealizable solutions, To eliminate the ambiguity in the solution 

which occurs, an approach is possible which has an explicit physical meaning 
and is based on the causality principle [l, 21; it is required that the time source 
not yield a response earlier than the time of starting up of the source. Differ- 

ent kinds of radiation conditions of the Sommerfeld type are known in thermo- 
elasticity problems [3 - 63. 

To extract the unique solution in dynamical thermoelasticity problems, it 
is proposed in this paper to use the causality principle, which is equivalent to 
the requirement of analyticity of the solution in the upper half of the complex 
frequency plane; there are studied the analytic properties of the solutions of 
the fundamental boundary value problems for the models used most often for 
thermoelastic media, and there are made deductions about their physical 

realizability. 

The fundamental equations of the generalized dynamical coupled problem in the 
absence of mass forces and heat sources have the form [7] 

~AU+(h+~)gPaddivu-_Pgradt--~= 0 

At-+- 
1 a% - i 

- - - q div $- - YZ,. div $ = 0 q i39 

The notation from the paper [7] is used here. 
If the expressions for the displacement and temperature are represented as 

u (z, -c) = & c UF (x, 0) eiordw . 

then UF (5, o) and TF (z, co) will satisfy the following system of equations: 
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@UF + (A t p) grad d iv UF - p grad TIT + pw” UF = 0 (2) 

ATF --t Tp + q(1 - iwt,)i61 divUF = 0 

Exactly as in [3]. it can be shown for the system (2) that its regular solution allows 
the following representation in the domain of regularity: 

u_E = ur + US 

(A + h,2) (A + hz2)U, = 0, rot U, = 0 

(A + h2)U2 = 0, div U, = 0 

(A + h,2) (A -t 2bz2)TF = 0 

Investigation shows that hk (s) (k = 1, 2, 3; --s = io) are analytic fUnCtiOnS 
of the parameter s for Re s > 0 if the following condition is satisfied: 

(3) 

If cr is the index of exponential growth in time of the initial data in the problem 
and its required derivatives equals zero and the inequality (3) is satisfied, then (see 

[8], Ch.), the unique solution of the boundary value problem will be (s is a piece- 
wise-smooth surface bounding a finite domain) 

PAUL + (h + p) grad div UL - /3 grad TL - ps2U~ = fz (5, s) 

- q (1 + ST,) s div UL = f2 (r, s) 

= F2 (J, s) 

(4) 

UL(x, s) = 5 u(x, r)e-SW, TL (x, s) = it (J, r)e-gTdz 
0 0 

Here UL (z, s), TL (x, s) are analytic functions for Res>O. The 

assertion that UL (5, s) is a regular function for Re s > 0 is equivalent to the 
assertion that the appropriate Fourier transform UF (5, co) is regular for Im o > 0. 
The uniqueness theorem for the generalized dynamical coupled problem of thermoelast- 
icity is proved in [9]. 

When E = 0, separation of the deformation and temperature fields occurs. Then 
compliance with the inequality 

Cl > cq (51 

is necessary for analyticity of the appropriate solution of the generalized uncoupled 

problem in the upper half-plane of the complex frequency plane. 
In the classical case, the problem (1) goes over into the dynamical coupled prob- 

lem. The analytical properties of the unique solution of the boundary value problem 
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obtained from (4) for cq = 00, ‘& = 0 are studied in [S]. It is shown that if the 
index of exponential growth in time of the initial data of the problem is zero, then 
the solution is analytic for Re s > GO or, equivalently, UF and TF are analytic 
for Im 0 > Go, where 

cr0 = max {cl%-l (1 - zz), 0) (61 

Hence, a necessary criterion for the analyticity of the causality principle is satis- 
fied just under the condition e > 1. Thus, for e, = 0 when separation of the de- 
formation and temperature fields occurs, the solution of the dynamical uncoupled prob- 
lem will already not be an analytic function for Im o > 0. 

Neglecting the inertial terms in (I.) results in a generalized quasistatic coupled 
problems, which we write in the space of Fourier time transforms 

+JP + (A t &grad div VF - fi grad TF = 0 (71 

ATF + ~+~)TF+9(1--iO~~)iWdiVUF=O 

We represent the solution of (7) in the form 

uF=U1+us+Us 

Here U, is the solution of the temperature-free static force problem with given 

boundary conditions, which evidently satisfies the causality principle; Us = grad 0~ 
is a particular solutinn of the first equation in (7), and U; is a solution introduced in 
order to satisfy the zero boundary conditions in combination with Us . For @F we 

obtain the equation 

AOF = kTF, k = -& 

The equation to determine TF then follows from the second equation in (6): 

ATF + (ioM + m2N)Tp = 0 

M = u-1 + qk, N = c~--~ + z,qk 

(8) 

where 

(9) 

ft is known that the solution of the JzIelmholtz equation which TF satisfies for the 

fundamental boundary value problems is an analytic function of the parameter 0 for 

Im 0 > 0. It then follows from (9) that @F is also an analytic function in the 
upper half-place of the complex frequency plane. The operations which must be per- 

formed with the function @F in order to obtain the stresses and displacements also 
result in functions with the mentioned analyticity property. The displacements or 

stresses, expressed in terms of the function U, , cancel the stresses or displacements 

expressed in terms of the potential mF on the boundary of the domain &’ . There- 
fore, the boundary conditions for us are zero conditions for ‘t < 0. Use of the 
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uniqueness theorem results in the deduction that ua G 0 for z < 0 . Then u 5 
0 up to the beginning of the effect of the perturbation. 

This deduction remains valid even for particular cases of the problem (7): 17 = 0 
is the generalized quasistatic uncoupled problem; cq = 00, *? = 0 is the quasi- 
static coupled problem; cQ = 00, z, = 0, q = 0 is the quasistatic uncoupled 
problem,. 

In order to clarify the subsequent discussion better and to relate them to the facts 
already known, let us examine a known example from physics which is considered in 

detail in [lo]. The equation of motion for the displacement Xj of the i-th electron 
subjected to the incident wave field E = Eme-ioz has the form 

m ( 10) 

where the second term in parentheses characterizes the damping due to collisions and 
radiation, and Oj is the frequency of the natural vibrations. The analytic solution 

of (10) for Im o > 0 has the form 

eE,eeZaZ 
xj = * m (19~” - 2iy,. - 1.02) 

(11) 

If the decelerating effect exerted by the electron is due just to radiation, then 
according to Lorentz, the term characterizing the damping in (10) can be replaced by 
the radiation reaction-_Bjd3xj/ dz 3. This results in replacement of the term - 2iYjO 
by --ifijd. The expression obtained already does not satisfy the causality principle 
since there is a pole o z i / Bj (1 i fij > Oj) in the upper half-plane Im o > 0 l 

Taking this into account, the deduction is made that the Lorentz refinement isnot just- 
ified. 

Similar difficulties are encountered in the dynamical problems of thermoelasticity. 
Functions satisfying the causality principle are the solution of the Lam& equation with- 
out a temperature term, as follows from the analytic properties of the solution of the 

corresponding elliptical problem [8]. The solution of boundary value problems for the 

diffusion form of the heat conduction equation (resulting from the Fourier law), which 
yields a sufficiently accurate description of the temperature field except for short time 
intervals, also does not violate the causality principle. Since the temperature will 
have an infinite propagation velocity, then the temperature gradient, and hence a 
quantity proportional to the gradient (-p grad t) will have an infinite propagation 
velocity. An attempt to refine the Lami equations taking account of the finite 
propagation velocity for the compression and shear waves by appending a parabolic 
heat conduction equation and adding the term -b grad t to the Lam& equations (the 

system (1) for cp = 00, z, = 0,11 = 0) results in the already mentioned unacceptable 
property: the solution of this problem will not satisfy the causality principle. 

Certain improvements are observed upon insertion of a term taking account of 
the mechanical coupling in the heat conduction equation 

Bto a 
- h, 27 (Ii” u (12) 
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(dynamical coupled problem). All these improvement are insufficient for compli- 
ance with the causality principle since the value of t: is within the interval (0,l) 
and is considerably less than one for the majority of real bodies [11,12]. Hence, the 
values of E do not result in the equality o0 ==f U (see (6)), i. e, , the analyticity of 
the solution in the upper half-plane of the complex variable W. 

If a heat conduction equation with an infinite propagation velocity for the heat is 
added to the static Lamk equation with the term - 0 grad 1 which can be interpret- 
ed as a dynamical Lami equation with infinite propagation velocity for the compress- 
ion and shear waves, with or without the mechanical coupling term taken into account, 
then the quasistatic problem obtained will describe the behavior of a thermoelastic 

medium without violating the causality principle. 
The deformation field in the body can be represented as the sum of a potential 

and vortex field. Then only the potential field component will be related to the 
temperature. Taking account of the preceding reasoning, it can be foreseen that the 
mathematical model of a medium taking account of the finite shear wave velocity and 

the infinite compression wave and temperature propagation velocity 

will also not violate the causality principle, Indeed, reasoning exactly as in the case 
of the quasistatic problem, we obtain that the solution of the boundary value problem 
for (13) in the Fourier time- transform space will be an analytic function of the para- 

meter 0 for Im w > 0. 
We call the problem (X3) a quasidynamical coupled problem. The mentioned an- 

alyticity property is evidently conserved even for the quasidynamical uncoupled prob- 
lem when the mechanical coupling term in the heat conduction equation is not taken 
into account, i, e., for dI = 1 i a. 

If it is taken into account that the heat flux depends not only on the temperature 

gradient but also on its prehistory, then we obtain a modified Fourier law 

which Maxwell actually described in 1867 [13]. This law results in a hyperbolic heat 

conduction equations, which corresponds to a finite heat propagation velocity equal 
to cq = Y/-a The condition for compliance with the causality principle for 
the dynamical coupled problem of thermoelasticity is given by (3) when a finite heat 
propagation velocity (second sound) is taken into account. But it was noted in [71 
that the experimental data on thermal pulsations indicate that the acoustic wave front 
leads the thermal front, i, e, , a stronger inequa~ty holds for a real body than the 

necessary (3) or (5), Cl > Cq. 
We then obtain that the causality principle is satisfied for both the generalized dy- 

namical coupled, and the uncoupled, problems. 
Summarizing, we conclude that the causality principle is satisfied for the follow- 

ing problems: the generalized dynamical coupled and uncoupled problems , the 
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generalized qu~ldynamical coupled and uncoupled problems, the generalized quasis- 
tatic coupled and uncoupled problems, the quasistatic coupled and uncoupled problems, 

but is not satisfied for the dynamical coupled and dynamical uncoupled problems. 
Therefore, if the magnitude of the heat propagation velocity in the thermoelastic- 

ity equations is greater than its corresponding velocity of compression wave propagation, 
the solution of the corresponding boundary value problem, except the generalized dy- 

namical coupled problem, will cease to portray the behavior of a real thermoelastic 
body even within the framework of those inaccuracies which follow directly from the 
physical assumptions. This problem can be used to describe the thermoelastic behav- 
ior of media for which the heat propagation velocity insignificantly exceeds the velo- 
city of compression wave propagation (if such media exist). 

Uncertainties in the selection of the branch cut direction and the bypass direction 
of the singularities on the real axis will occur in solving specific dynamical thermo- 

elasticity problems by using Fourier integral transforms in the time and Hankel or 
Fourier transforms in the space coordinates, exactly as in the case of the dynamical 
elasticity theory problems [Z]. Utilization of the causality principle to this end is in 
no way different from its application in the dynamical elasticity theory problems con- 
sidered in [23. 
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